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Abstract 

 
Atwood’s machine is presented in introductory physics courses as an 

exercise in the simultaneous solution of Newton’s second law for 

translational and rotational motions, assuming the pulley has non-

negligible mass. Occasionally it is also used as a lecture demonstration 

or for quantitative laboratory measurements of a system undergoing 

constant acceleration. As discussed in this paper, one can progressively 

simplify the apparatus while maintaining these pedagogical goals, to 

end up with an easy way to measure the value of the freefall 

acceleration, g, by counting to ten. 

 

 

Atwood’s machine consists of two hanging weights, of masses m1 and 
m2, at opposite ends of an ideal string (i.e., which is massless and does not 
stretch) passing around a pulley, as sketched in Fig. 1. Suppose that the 
pulley has moment of inertia I and radius r (at the location where the 
string passes around it), that the bearings of the pulley on its axle are 
frictionless, and that the string does not slip on the pulley. 

There are at least three pedagogical reasons that time is devoted in 
introductory physics classes to analyzing Atwood’s machine. First, as an 
example of constructing free-body diagrams and deducing the relevant 
equations from them, it is an instructive application of both the 
translational ( F = ma ) and rotational ( = I ) forms of Newton’s second 
law. Second, it furnishes mathematical practice in the simultaneous 
solution of linear equations, a skill that physics students will need 
repeatedly (e.g., when Kirchhoff’s rules of circuit analysis are 
encountered). Finally, Atwood’s machine (or some straightforward 
modification of it) is often used in the laboratory as an experimental 
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means of “reducing g” to a measurable value. (For example, one common 
setup consists of a cart, whose position is measured at regular time 
intervals using an ultrasonic ranger, accelerating along a linear track as it 
is pulled by a weight hanging over a pulley at the far end of the track.) 

 
Fig. 1. Free-body diagram for an Atwood’s machine consisting of two 
weights suspended from a pulley having a nonzero moment of inertia. 
The relevant forces on and accelerations of each of the three parts of 
the machine are indicated, where T denotes a tension force, mg a 
gravitational force, and a and  are translational and angular 
accelerations, respectively. For the sake of specificity, the directions of 
the accelerations are chosen under the assumption that m1 is larger than 
m2. 
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Specifically, the analysis of the setup sketched in Fig. 1 proceeds as 
follows. Newton’s second law is 

 
  
m

1
g T

1
= m

1
a  (1) 

for the left-hand mass, 

 
  
T

2
m

2
g = m

2
a  (2) 

for the right-hand mass, noting the opposite signs of the tension and 
weight compared to Eq. (1) because of the opposite directions of the 
accelerations of the two hanging masses in Fig. 1, and 
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1
T

2
)r = I

a

r
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for the pulley about its center (using the no-slip condition   = a / r ). 
These are three equations in three unknowns (T1, T2, and a). To eliminate 
the tensions in favor of the acceleration, one can solve Eq. (1) for T1 and 
Eq. (2) for T2 and substitute those results into Eq. (3) to obtain 

 

  

a =
m

1
m

2

m
1

+ m
2

+ I / r
2

g  (4) 

after rearranging. The right-hand side of this equation is sometimes 
interpreted as the net external accelerating force divided by the total 
effective accelerated mass, although such an interpretation is not 
recommended in an introductory course. (For one thing, it obscures the 
fact that the external forces of the tension in the pulley support string and 
the weight of the pulley—which are not equal and opposite forces—have 
not been included in the numerator.) It is clear that a can either be positive 
or negative depending on whether m1 is greater or smaller than m2, 
respectively. By choosing m1 to be close in value to m2, one can make the 
absolute value of the acceleration as small as one needs for convenient 
experimental measurement (although in practice one must ensure that it 
remains significantly larger than the deceleration due to the frictional 
torque of the bearings and air drag on the moving weights). 

However, there are two notable difficulties that students often have in 
attempting to reproduce this derivation on their own. First, students get 
confused about the circumstances under which the tensions on the two 
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sides of a pulley are different (as in Fig. 1) or are the same (reasoning 
from the fact that one has a single continuous string passing around a 
pulley). Second, it can be a challenge for students to solve three equations 
simultaneously. They often end up going around in circles, eliminating a 
variable in one equation, only to resurrect it in another. To avoid these two 
difficulties, but retain all three pedagogical goals listed in the second 
paragraph of this paper, we can eliminate one of the hanging masses and 
wrap the free end of the string around the pulley (cf. Fig. 2). 

 

 
Fig. 2. “Half Atwood’s machine” obtained by eliminating one of the 
hanging masses and wrapping the free end of the string around the 
pulley. The primary advantages of this system over that of Fig. 1 are 
that there is now only one value of tension to consider and two 
simultaneous equations to solve. 
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Now Newton’s second law for the hanging weight becomes 

  mg T = ma . (5) 

The rotational version of Newton’s law for the pulley is 

 
 
Tr = I

a

r
. (6) 

Equations (5) and (6) are uncluttered by the subscripts of Eqs. (1) to (3). 
Equation (6) is readily solved for T and substituted into Eq. (5) to obtain 

 

  

a =
g

1+ I / (mr
2 )

. (7) 

We can go a step further in simplifying the apparatus and eliminate the 
other hanging mass as well. Just let the pulley itself fall, after anchoring 
the free end of the string to a stationary support, as illustrated in Fig. 3. 
Equations (5) and (6) continue to apply in this case, where the latter 
equation uses the torque and moment of inertia evaluated about the center 
of the pulley, just as it did previously. In both Figs. 2 and 3, we have a 
mass m falling at the end of a string while simultaneously the string 
unrolls off a cylinder of moment of inertia I. Therefore the downward 
acceleration of the pulley in Fig. 3 is given by Eq. (7). 
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Fig. 3. Free-body diagram for a cylinder unrolling without slipping 
along a vertical string. The top attachment point of the string can be to 
your finger held stationary, making it easy to carry around and perform 
this demonstration. As a bonus, the cylinder rewinds itself back up after 
it has reached its bottom-most point. 

 

One now has a simple apparatus to transport and demonstrate. 
However, it has one small flaw as drawn, in that one cannot reduce the 
acceleration as much as one might really like for quantitative 
measurements. Even if we increase the moment of inertia of the cylinder 
to its maximum value (for a given mass and radius) of   I = mr

2 , 
corresponding to a hollow ring, we will only have “decreased g” by 50% 
when we solve for the acceleration in Eq. (7). Fortunately it is not hard to 
alter the device to overcome this difficulty: Use a yoyo (cf. Fig. 4) to 
move mass outward to a larger radius R and thus to increase I. The radius r 
around which the string is wrapped is not changed however, and therefore 
Eq. (7) remains valid. 
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Fig. 4. Modifying the shape of the dropped cylinder in Fig. 3 so that its 
moment of inertia can be increased without changing the radius r about 
which the string is wound. 

 

I suggest constructing yoyos for such use as follows. Start with an 
identical pair of uniform disks with combined mass m, so that 

  
I =

1

2
mR

2 . 
Next construct the inner cylinder with radius   r = R /  where  > 1  is the 
desired ratio of the outer to the inner radius of the yoyo. Use a light-
weight cylinder for this purpose (a short piece of plastic pipe works well) 
so that its moment of inertia is negligible compared to that of the two 
disks. Substituting these values of I and r into Eq. (7) results in a 
downward translational acceleration of the yoyo of 

 

  

a =
g

1+
2 / 2

. (8) 

To make the acceleration small, choose  >> 1, in which case the factor of 
unity can be neglected in the denominator of Eq. (8). If the yoyo is wound 
up on a string of length L (plus the straight dashed length in Fig. 4 so that 
the free end can be accessed at the rim) and released from rest, then the 
time T required for it to descend to the end of the string is found from a 
standard equation of kinematics, 
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L =

1

2
aT

2 . (9) 

In particular, for a 1-m drop, we therefore predict   T / 3 s . For 
example, if  = 30 , a fall time of about 10 seconds is expected, a round 
value one can even estimate without a timer (by counting “1001, 1002, …, 
1010”). I constructed such a yoyo by cutting two 15-inch-diameter 
wooden disks on a bandsaw and using a half-inch-diameter plastic pipe of 
about 1-cm length for the inner cylinder. To assemble the yoyo, I drilled 
clearance holes through the centers of the wooden disks and fastened 
everything together with a screw and nut. This permits quick disassembly 
for student measurement of the inner pipe diameter or reparation of a 
broken string. (Although I use strong nylon line, it still breaks 
occasionally.) I also drilled small holes through the side of the pipe to 
fasten the string and keep the knot from slipping around the inner cylinder. 
Agreement with the exact theoretical prediction is found to within a few 
tenths of a second, comparable to the reaction time in its measurement. 
Averaging repeated trials can reduce this error further. 

In conclusion, a falling yoyo is a valuable theoretical and experimental 
problem for inclusion in introductory physics courses. As an exercise in 
simultaneously applying Newton’s second law in both its translational and 
rotational forms, it complements other such problems in the curriculum. (It 
is worth noting that there are several other instructive methods, as 
discussed in the Appendix, of analyzing the yoyo’s descent, just as there 
are for Atwood’s machine.) For example, it is closely analogous to a 
wheel rolling without slipping down an incline. Secondly, it is a more 
convenient handheld apparatus than the traditional Atwood’s machine, 
which requires well-lubricated bearings to minimize frictional effects, a 
sturdy stand to support the pulley, and some form of arrestor to keep the 
falling weights from violently crashing into the tabletop and pulley. 
Thirdly, one can experimentally determine g with high accuracy merely by 
measuring the ratio of the outer and inner radii, the length of the string 
wound onto the yoyo, and the time of fall. In contrast, the standard 
apparatus necessitates a nontrivial measurement of the moment of inertia 
of the pulley. 
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Appendix: Alternate Methods of Solving for the Yoyo’s Motion 

According to the parallel-axis theorem, the moment of inertia of the 
yoyo about an axis a distance r from its center is 

 
  
I
r

= I + mr
2 . (10) 

Here I is the moment of inertia about the symmetry axis of the yoyo, while 
Ir is the moment of inertia about the point at which the string unwinds 
from the inner cylinder in Fig. 4. The yoyo instantaneously rotates about 
this point. We can use this fact to obtain the translational acceleration by 
writing the torque equation about this end point of the string, 

 
 
mgr = I

r

a

r
. (11) 

Substituting Eq. (10) and rearranging gives Eq. (7). This idea of an 
instantaneous axis of rotation is similarly used in the explanation of the 
standard demonstration of a pulled spool (i.e., a yoyo on a horizontal 
rough table). In particular, there is a critical pulling angle of the string, 

  cos 1(r / R)  relative to the horizontal, at which the spool spins in place 
rather than rolling forward or backward, because the tension then exerts 
zero torque about the point of contact between the spool and table. 

A second method of solution is to use energy conservation. Let  be 
the translational speed of the center of mass of the yoyo after it has fallen 
a distance L in a time T starting from rest. The yoyo gains an amount of 
kinetic energy equal to the gravitational potential energy lost, 

 
  

mgL =
1

2
I
r r

2

, (12) 

since the quantity in parentheses is the final angular speed of the yoyo, , 
about its instantaneous axis of rotation. Equivalently, the right-hand side 
of Eq. (12) can be written as 

  
1

2
m

2
+

1

2
I

2 , as one can see by 
substituting Eq. (10) into it. Equation (12) can now be used to deduce 
either a or T by replacing the speed using the respective equations of 
kinematics 

   
2

= 2aL  (13) 
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or 

 
  2

=
ave

=
L

T
 (14) 

where the middle term in Eq. (14) is the average translational speed of the 
yoyo over the distance L. 

Finally, in an intermediate mechanics course, the acceleration of the 
yoyo can be instructively derived using either the Lagrangian or the 
Hamiltonian formalism. Consider the former for instance. There is only 
one generalized coordinate, which we can take to be y, the distance 
downward that the center of the yoyo has moved from its starting position 
(which position we can also take as the zero level for the gravitational 
potential energy); the angle of rotation of the yoyo relative to its starting 
orientation is constrained by the string’s no-slip condition to be   = y / r . 
Noting that 

 
 (where the dot denotes a time derivative), the 

Lagrangian (equal to the difference between the kinetic and potential 
energies) can be written as 

 
    

L( y, y) =
1

2
I
r

y

r

2

+ mgy . (15) 

Then Lagrange’s equation immediately gives the acceleration, 

 
    

L

y
=

d

dt

L

y
mg =

I
r

r
2

a , (16) 

in agreement with Eq. (11). 


